p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.75C24, C22.134C25, C24.150C23, C42.117C23, C22.172+ 1+4, C4⋊Q8⋊45C22, D4⋊5D4⋊35C2, (C4×D4)⋊67C22, (C4×Q8)⋊64C22, C4⋊C4.321C23, C4⋊D4⋊40C22, C23⋊3D4⋊15C2, (C2×C4).124C24, (C2×C42)⋊72C22, C22⋊Q8⋊50C22, C22≀C2⋊17C22, C24⋊C22⋊6C2, (C2×D4).326C23, C4.4D4⋊41C22, (C22×D4)⋊47C22, C22⋊C4.49C23, (C2×Q8).306C23, C42.C2⋊66C22, (C22×Q8)⋊43C22, C42⋊2C2⋊44C22, C22.32C24⋊19C2, C42⋊C2⋊61C22, (C22×C4).394C23, C22.45C24⋊19C2, C2.63(C2×2+ 1+4), C2.50(C2.C25), C22.56C24⋊8C2, C22.57C24⋊9C2, C22.D4⋊21C22, C23.36C23⋊48C2, C22.49C24⋊22C2, C23.38C23⋊31C2, C22.36C24⋊31C2, (C2×C4.4D4)⋊59C2, (C2×C22⋊C4)⋊63C22, (C2×C4○D4).240C22, SmallGroup(128,2277)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.134C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=g2=1, e2=ba=ab, f2=a, dcd=gcg=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 876 in 530 conjugacy classes, 380 normal (24 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4.4D4, C23.36C23, C23⋊3D4, C23.38C23, C22.32C24, C22.36C24, D4⋊5D4, C22.45C24, C22.49C24, C24⋊C22, C22.56C24, C22.57C24, C22.134C25
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, C25, C2×2+ 1+4, C2.C25, C22.134C25
(1 5)(2 6)(3 7)(4 8)(9 31)(10 32)(11 29)(12 30)(13 23)(14 24)(15 21)(16 22)(17 27)(18 28)(19 25)(20 26)
(1 7)(2 8)(3 5)(4 6)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)
(1 14)(2 23)(3 16)(4 21)(5 24)(6 13)(7 22)(8 15)(9 20)(10 25)(11 18)(12 27)(17 30)(19 32)(26 31)(28 29)
(1 19)(2 28)(3 17)(4 26)(5 25)(6 18)(7 27)(8 20)(9 21)(10 14)(11 23)(12 16)(13 29)(15 31)(22 30)(24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 9 5 31)(2 10 6 32)(3 11 7 29)(4 12 8 30)(13 27 23 17)(14 28 24 18)(15 25 21 19)(16 26 22 20)
(1 15)(2 16)(3 13)(4 14)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(17 29)(18 30)(19 31)(20 32)
G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,31)(10,32)(11,29)(12,30)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (1,7)(2,8)(3,5)(4,6)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28), (1,14)(2,23)(3,16)(4,21)(5,24)(6,13)(7,22)(8,15)(9,20)(10,25)(11,18)(12,27)(17,30)(19,32)(26,31)(28,29), (1,19)(2,28)(3,17)(4,26)(5,25)(6,18)(7,27)(8,20)(9,21)(10,14)(11,23)(12,16)(13,29)(15,31)(22,30)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,5,31)(2,10,6,32)(3,11,7,29)(4,12,8,30)(13,27,23,17)(14,28,24,18)(15,25,21,19)(16,26,22,20), (1,15)(2,16)(3,13)(4,14)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(17,29)(18,30)(19,31)(20,32)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,31)(10,32)(11,29)(12,30)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (1,7)(2,8)(3,5)(4,6)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28), (1,14)(2,23)(3,16)(4,21)(5,24)(6,13)(7,22)(8,15)(9,20)(10,25)(11,18)(12,27)(17,30)(19,32)(26,31)(28,29), (1,19)(2,28)(3,17)(4,26)(5,25)(6,18)(7,27)(8,20)(9,21)(10,14)(11,23)(12,16)(13,29)(15,31)(22,30)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,5,31)(2,10,6,32)(3,11,7,29)(4,12,8,30)(13,27,23,17)(14,28,24,18)(15,25,21,19)(16,26,22,20), (1,15)(2,16)(3,13)(4,14)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(17,29)(18,30)(19,31)(20,32) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,31),(10,32),(11,29),(12,30),(13,23),(14,24),(15,21),(16,22),(17,27),(18,28),(19,25),(20,26)], [(1,7),(2,8),(3,5),(4,6),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28)], [(1,14),(2,23),(3,16),(4,21),(5,24),(6,13),(7,22),(8,15),(9,20),(10,25),(11,18),(12,27),(17,30),(19,32),(26,31),(28,29)], [(1,19),(2,28),(3,17),(4,26),(5,25),(6,18),(7,27),(8,20),(9,21),(10,14),(11,23),(12,16),(13,29),(15,31),(22,30),(24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,9,5,31),(2,10,6,32),(3,11,7,29),(4,12,8,30),(13,27,23,17),(14,28,24,18),(15,25,21,19),(16,26,22,20)], [(1,15),(2,16),(3,13),(4,14),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(17,29),(18,30),(19,31),(20,32)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2+ 1+4 | C2.C25 |
kernel | C22.134C25 | C2×C4.4D4 | C23.36C23 | C23⋊3D4 | C23.38C23 | C22.32C24 | C22.36C24 | D4⋊5D4 | C22.45C24 | C22.49C24 | C24⋊C22 | C22.56C24 | C22.57C24 | C22 | C2 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 2 | 1 | 2 | 1 | 2 | 4 |
Matrix representation of C22.134C25 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 3 | 0 | 0 | 0 | 0 |
3 | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 1 | 3 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 4 | 1 |
4 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 1 | 3 |
0 | 0 | 0 | 0 | 1 | 4 | 0 | 4 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 1 | 3 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 1 | 0 | 1 |
1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 1 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[2,3,0,3,0,0,0,0,4,3,2,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,1,4,4,0,0,0,0,0,4,0,0,0,0,0,0,4,1,0,4,0,0,0,0,0,3,0,1],[4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,1,4,1,0,0,0,0,0,0,0,0,0,4,1,1,0,0,0,0,4,0,4,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,4],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,4,4,0,0,0,0,0,4,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,3,0,1],[1,0,1,4,0,0,0,0,0,0,0,4,0,0,0,0,3,1,4,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,4],[4,0,0,0,0,0,0,0,3,1,4,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4] >;
C22.134C25 in GAP, Magma, Sage, TeX
C_2^2._{134}C_2^5
% in TeX
G:=Group("C2^2.134C2^5");
// GroupNames label
G:=SmallGroup(128,2277);
// by ID
G=gap.SmallGroup(128,2277);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,723,520,2019,570,136,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=g^2=1,e^2=b*a=a*b,f^2=a,d*c*d=g*c*g=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations